Team Round

Lexington High School

March 23, 2019

- 1. David runs at 3 times the speed of Alice. If Alice runs 2 miles in 30 minutes, determine how many minutes it takes for David to run a mile.
- 2. Al has 2019 red jelly beans. Bob has 2018 green jelly beans. Carl has *x* blue jelly beans. The minimum number of jelly beans that must be drawn in order to guarantee 2 jelly beans of each color is 4041. Compute *x*.
- 3. Find the 7-digit palindrome which is divisible by 7 and whose first three digits are all 2.
- 4. Determine the number of ways to put 5 indistinguishable balls in 6 distinguishable boxes.
- 5. A certain reduced fraction $\frac{a}{b}$ (with a, b > 1) has the property that when 2 is subtracted from the numerator and added to the denominator, the resulting fraction has $\frac{1}{6}$ of its original value. Find this fraction.
- 6. Find the smallest positive integer *n* such that $|\tau(n+1) \tau(n)| = 7$. Here, $\tau(n)$ denotes the number of divisors of *n*.
- 7. Let $\triangle ABC$ be the triangle such that AB = 3, AC = 6 and $\angle BAC = 120^{\circ}$. Let *D* be the point on *BC* such that *AD* bisect $\angle BAC$. Compute the length of *AD*.
- 8. 26 points are evenly spaced around a circle and are labeled *A* through *Z* in alphabetical order. Triangle $\triangle LMT$ is drawn. Three more points, each distinct from *L*, *M*, and *T*, are chosen to form a second triangle. Compute the probability that the two triangles do not overlap.
- 9. Given the three equations

$$a+b+c = 0$$
$$a2+b2+c2 = 2$$
$$a3+b3+c3 = 19$$

find *abc*.

- 10. Circle ω is inscribed in convex quadrilateral *ABCD* and tangent to *AB* and *CD* at *P* and *Q*, respectively. Given that AP = 175, BP = 147, CQ = 75, and $AB \parallel CD$, find the length of *DQ*.
- 11. Let *p* be a prime and *m* be a positive integer such that $157p = m^4 + 2m^3 + m^2 + 3$. Find the ordered pair (*p*, *m*).
- 12. Find the number of possible functions $f : \{-2, -1, 0, 1, 2\} \rightarrow \{-2, -1, 0, 1, 2\}$ that satisfy the following conditions. (1) $f(x) \neq f(y)$ when $x \neq y$ (2) There exists some x such that $f(x)^2 = x^2$
- 13. Let p be a prime number such that there exists positive integer n such that

$$41pn - 42p^2 = n^3.$$

Find the sum of all possible values of *p*.

- 14. An equilateral triangle with side length 1 is rotated 60 degrees around its center. Compute the area of the region swept out by the interior of the triangle.
- 15. Let $\sigma(n)$ denote the number of positive integer divisors of *n*. Find the sum of all *n* that satisfy the equation $\sigma(n) = \frac{n}{3}$.
- 16. Let *C* be the set of points $\{a, b, c\} \in \mathbb{Z}$ for $0 \le a, b, c \le 10$. Alice starts at (0, 0, 0). Every second she randomly moves to one of the other points in *C* that is on one of the lines parallel to the *x*, *y*, and *z* axes through the point she is currently at, each point with equal probability. Determine the expected number of seconds it will take her to reach (10, 10, 10).

17. (\star) Find the maximum possible value of

$$abc\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^3$$

where *a*, *b*, *c* are real such that a + b + c = 0.

- 18. Circle ω with radius 6 is inscribed within quadrilateral *ABCD*. ω is tangent to *AB*, *BC*, *CD*, and *DA* at *E*, *F*, *G*, and *H* respectively. If AE = 3, BF = 4 and CG = 5, find the length of *DH*.
- 19. Find the maximum integer *p* less than 1000 for which there exists a positive integer *q* such that the cubic equation

$$x^3 - px^2 + qx - (p^2 - 4q + 4) = 0$$

has three roots which are all positive integers.

20. (*) Let $\triangle ABC$ be the triangle such that $\angle ABC = 60^\circ$, $\angle ACB = 20^\circ$. Let *P* be the point such that *CP* bisects $\angle ACB$ and $\angle PAC = 30^\circ$. Find $\angle PBC$.